

Technical University in Zvolen

WOOD-BASED WASTE MANAGEMENT - IMPORTANT RESOURCES FOR CIRCULAR ECONOMY

Ján Parobek, Hubert Paluš, Michal Dzian, Alena Rokonalová, Rastislav Čerešňa

Current Trends and Challenges for Forest-Based Sector: Carbon Neutrality and Bioeconomy

Contents

- Green Economy and Forest-based bioeconomy
- Wood-based waste management in the circular economy
- Analysis of wood flows and carbon storage in HWP
- Concept of cascading use of wood products
- Case study wood flows in Slovakia
- Conclusions

Green Economy and Forest-based bioeconomy

Resource efficiency Achieving greater wellbeing whilst reducing resource use and emissions

Green economy A macro-economic approach Focus on investing in green economic activities, infrastructure and skills

SCP

Policies, tools and practices that support a green economy approach Focus on capacity building and mainstreaming of eco-efficient production and responsible consumption behaviours

The three main areas for the current work on Green Economy are:

- 1) Advocacy of macro-economic approach to sustainable economic growth through regional, sub-regional and national fora
- 2) Demonstration of Green Economy approaches with a central focus on access to green finance, technology and investments
- 3) Support to countries in terms of development and mainstreaming of *macro*economic policies to support the transition to a Green Economy

Green Economy

- · Improve human well-being and social equity
- Reduce environmental risks and ecological scarcities

Bioeconomy

· Production of biomass

Bio-based Economy

Processing of biomass:

- Food and feed
- Textiles, wearing apparel, paper and pulp, furniture
- Biorefineries, biofuels, bio-based chemicals, bio-based plastics, biogas

- Replacing non-renewables with biological resources
- Cascading use of biomass
- Minimizing bio-waste

Circular Economy

- High degree of recycling and reduction for materials and products
- Maintaining value of materials, products, and resources
- Minimizing waste

н

н

н

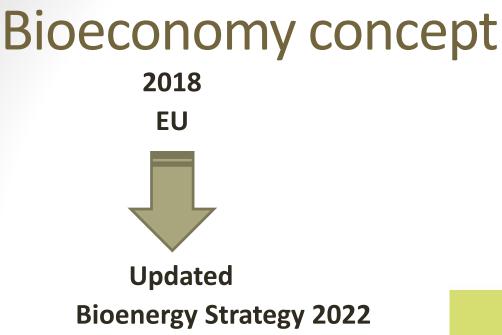
I.

ł

Bioeconomy concept

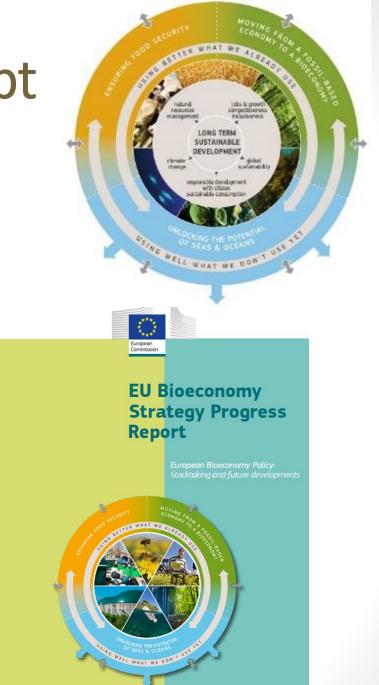
2012 EU Bioenergy Strategy and Action Plan *Innovating for Sustainable Growth: a Bioeconomy for Europe*:

 "the production of renewable biological resources and their conversion into food, feed, bio-based products and bioenergy. It includes agriculture, forestry, fisheries, food and pulp and paper production, as well as parts of chemical, biotechnological and energy industries"


2012 EU Bioenergy Strategy aims to

 "pave the way to a more innovative, resource efficient and competitive society that reconciles food security with the sustainable use of renewable resources for industrial purposes, while ensuring environmental protection,

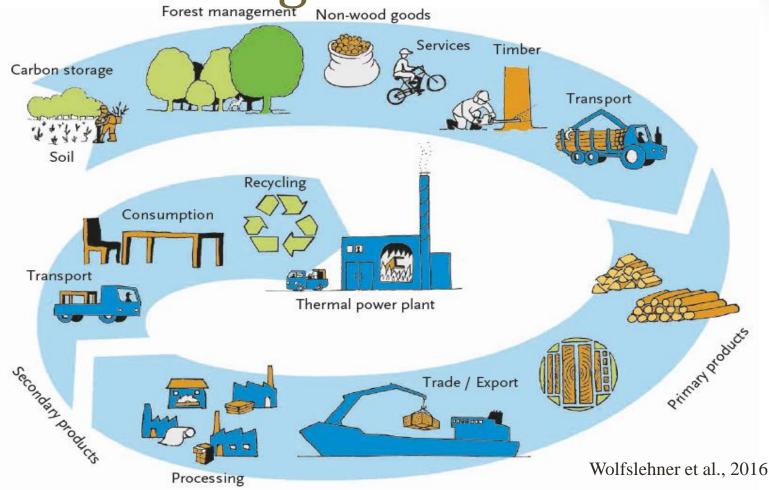
Objectives


- ensuring food and nutrition security
- managing natural resources sustainably
- reducing dependence on non-renewable, unsustainable resources
- mitigating and adapting to climate change
- strengthening European competitiveness and creating jobs

Proposed measures

- strengthen the bio-based sectors,
- bioeconomies across Europe
- ecological boundaries

European Commission, 2022


Forest-based bioeconomy

Bioeconomy criteria	Forest-related topics			
Ensuring food security	Provision of water for agriculture and fisheries to secure			
	sustainable food production; Edible non-wood forest products;			
	Forage and feed for livestock			
Managing natural	Using existing SFM criteria and indicators for SFM; Forest			
resources sustainably	ecosystem services; Social services like health/wellbeing;			
	Desertification; Illegal logging; Green infrastructure			
Reducing dependence on	Low carbon society: carbon sequestration, carbon footprint,			
non-renewable resources	carbon neutrality; Renewable goods and substitution of fossil			
	products: bio-based products, bioenergy, carbon in wood			
	products; Resource efficiency; Biomass availability; Energy			
	security, independence from non-renewables; Indirect land			
	use change, displacement effects of EU biomass demand			
Mitigating and adapting to	Compliance with climate policy goals; Resource efficiency;			
climate change	Carbon accounting; Climate change effects: diseases, pests,			
	fires; Resilience and risk			
Increasing competitiveness	Jobs in rural and in urban areas; Forest sector workforce;			
and creating jobs	Income generation; Green jobs, services to/from the sector;			
	Innovation and start ups; Diversification of forest-related bio-			
	based products; Emerging societal trends and new markets			

Source: Winkel, G. (Ed.). 2017. What Science Can Tell Us 8.

Harvested Wood Products (HWPs)

 wood-based materials harvested from forests, which are used for products such as furniture, plywood, paper and paper-like products, or for energy. a

Climate impact of carbon storage effect

products in market segments

HWP's contribution to mitigation of climate change:

- forming a storage pool of wood-based carbon and
- substituting environmentally damaging sources of material and energy such as fossil fuels.

1 kg of wood \approx 500 g of carbon \approx 1.7 kg of CO₂

Research of the Utilisation of Wood as Renewable Raw Material in the Context of Green Economy

Objective

 to propose and develop optimal models of wood use in the national context that would take into account the main principles of the bioeconomy and their application in different sectors of wood production, processing and utilisation

Relevance to the bioeconomy objectives

- Reducing dependence on non-renewable resources
 - biomass availability
 - resource efficiency
- Mitigating and adapting to climate change
 - carbon accounting in harvested wood products (HWP)

Methodology Approach

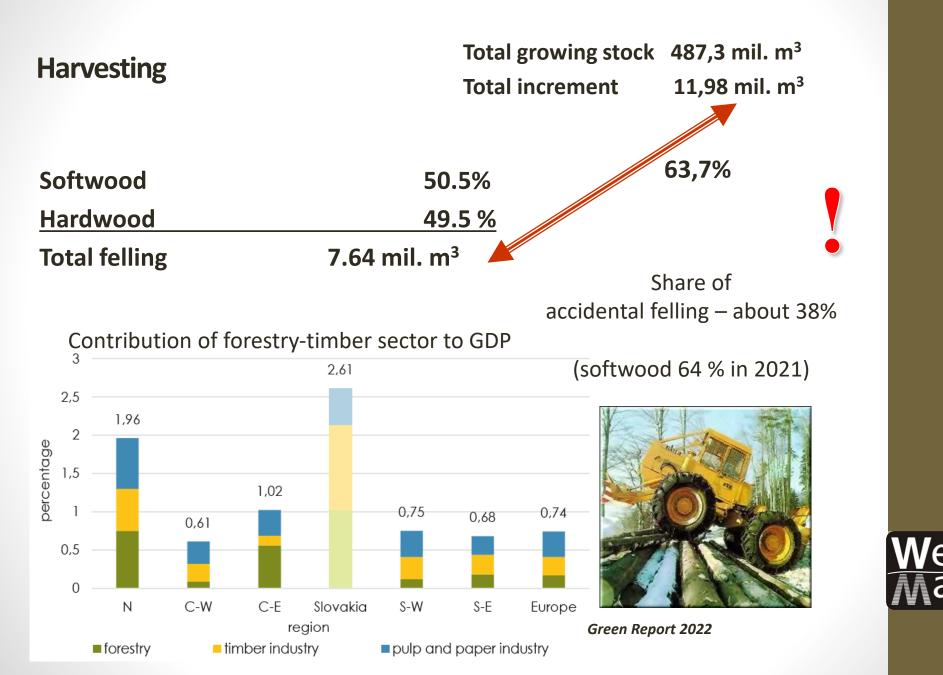
Biomass availability

analyses of the timber production potential

and the **prognosis** of its development

- model distribution of growing stock by quality grades of wood assortments
- models of wood flows

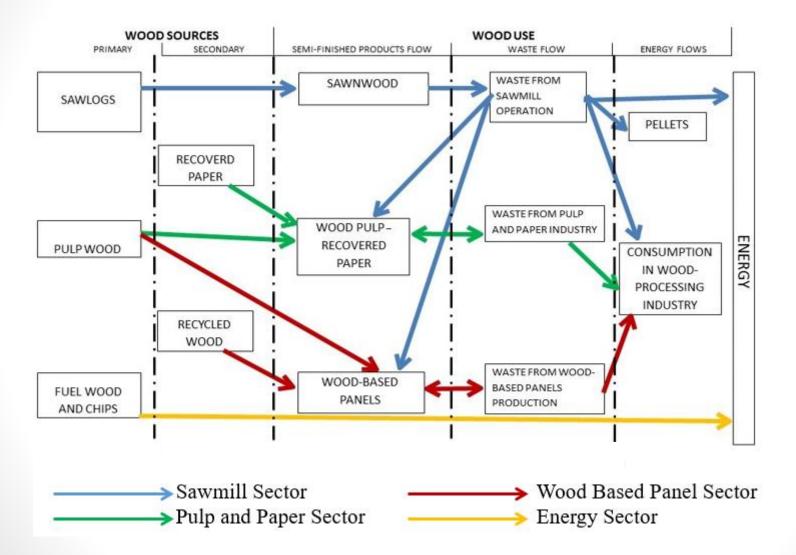
Trends of basic forestry data in Slovakia


	Forest area	Forest cover	Population	Forest area per capita	Growing stock	Growing stock per hectar
Year	ths. ha	%	mil.	ha	mil. m ³	m ³ .ha ⁻¹
1920	1 659.0	33.9	3.00	0.55	213.3	129
1950	1 771.2	36.1	3.46	0.51	251.2	142
2000	1 997.9	40.7	5.37	0.37	410.0	215
2021	1 952.8	41.3	5.45	0.36	487.3	250

Green Report 2022

250,0 239,2 247,0 248,7 600 228,4 214,0 250 196,2 500 183,3 Ś 178,2 200 183, 187 461.7 400 409,6 138 million m³ 150 ha m³ / ha 150 28 300 200 212,0 207,2 202,3 198,9 196,5 194,5 188,3 180,0 50 100 231,5 275,9 286,6 292,8 173,2 210,7 ~ 189, 249, 0 0 2005 1991 1995 2000 2010 2015 2019 2021 middle year of the interval total growing stock conifers broadleaves growing stock per ha

Trends in growing stock and by main tree species



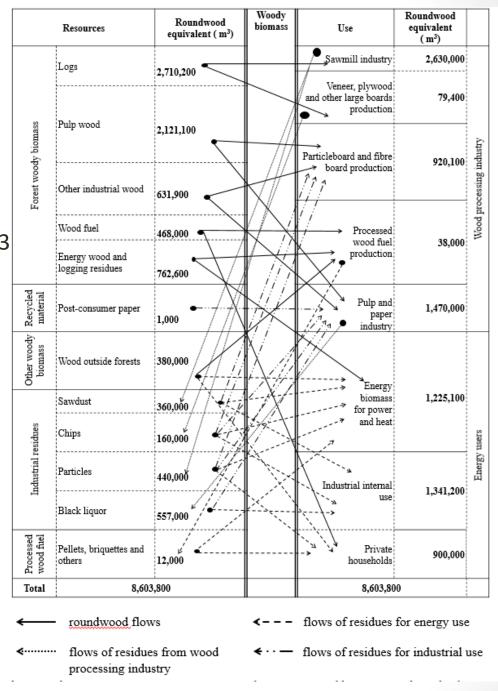
Categories of Wood Resources and Uses

Woody biomass		Wood	products	
and waste Sources		Uses		
Forest woody biomass	Coniferous roundwood (logs, pulp wood, other industrial wood, wood fuel)	Sawmill industry	stry	
	Non-coniferous roundwood (logs, pulp wood, other industrial wood, wood fuel)	Veneer and plywood industry	Wood processing industry	
	Forest chips	Particleboard and fibre board industry	d proce	
	Other logging residues	Wood fuel industry	Mood	
Used material (paper and other)	Post-consumer fibres	Pulp and paper industry	-	
Other woody biomass	Woody biomass outside forests	Power and heat	Energy users	
Wood processing residues	Sawmill residues (sawdust, chips, particles)	Industrial internal		
	Pulp production co-products			
Processed wood fuel	Processed wood fuel	Private households		
Total			Total	

We Ma

Simplified structure of wood flows

Domestic wood resources in Slovakia (in M3).


Wood Reources		Use of Wood		
Roundwood Production	7 448 000			
Roundwood Import	2 000 000	Roundwood Export	2 290 000	
Recycled Paper	141 113			
		Domestic Consumption	7 299 113	
Total sources	9 589 113	Total uses	9 589 113	

Wood resource balance

- Total resources were 8.6 mil. m3 roundwood equivalents.
- Taking into account wood cascading principles through repeated utilisation of wood residues and energy flows (cascade coefficient) the total use of wood increased 1.46 times.

This distribution of wood resources is considered the **"basic reference model"**

Wood flow analysis

Roundwood volume on the resource side is supplemented mainly by wood processing residues (18%) consisting primary of:

- industrial sawmill residues (11%),
- black liquor production (7%).

The results show that :

- sawmilling industry consumed 30%,
- wood based panels industry 13%,
- pulp and paper industry 17%
- energy sector 40% of the total domestic wood consumption.

Over 60% of it is used by industry and 40% by energy sector, dominated by internal industrial use (16%).

This distribution of wood resources is considered the "basic reference model"

Carbon storage in HWP methodology approach

Carbon storage in HWP

• estimation of carbon stocks and annual carbon stock changes in harvested wood products

"Stock change approach" applied"

- evaluation of the **annual change of the carbon stock in HWP** within the domestic consumption
- estimation of carbon stocks and annual changes in HWP pool is calculated separately for each of the HWP fractions: *"sawnwood", "wood-based panels" and "paper and paperboard"*
- the first-order decay (FOD) in combination with estimates of half-lives is applied (IPCC, 2006, 2013) sawnwood 35 years, WBP 25 years, paper products 2 years

(A)
$$C(i+1) = e^{-k} \cdot C(i) + \left(\frac{1-e^{-k}}{k}\right)$$
 inflow (i) s C(1900)=0,0

(B) $\Delta C(i) = C(i+1) - C(i)$

Where:

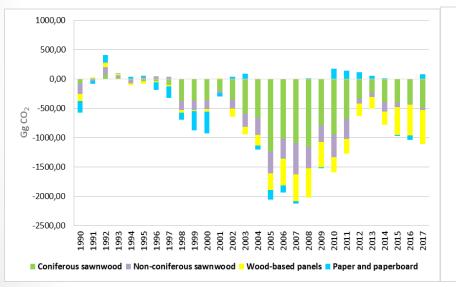
- i = year C(i) = the carbon stock in the particular Harvested Wood Product category at the beginning of year i, Gg C

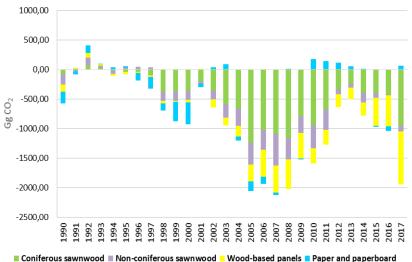
- k = decay constant of FOD for each HWP category (HWPj) given in units yr-1 (k = In(2)/HL, where HL is half-life of the HWP pool in years.

- Inflow (i) = the inflow to the particular HWP category (HWPj) during year i, Gg C yr-1 Δ C(i) = carbon stock change of the HWP category during year i, Gg C yr-1.

Development of optimal models of wood utilisation - scenarios

Alternative models will reflect different scenarios considering:


- optimal value utilisation of the available structure of raw wood assortments;
- increase in domestic wood processing and consumption (export vs. domestic consumption);
- effective application of cascade wood use principles;
- improvement in the carbon balance of the use of wood and sequestration of carbon in harvested wood products.


Cabron storage in HWP

 gains and losses of CO₂ from domestically produced and used HWP

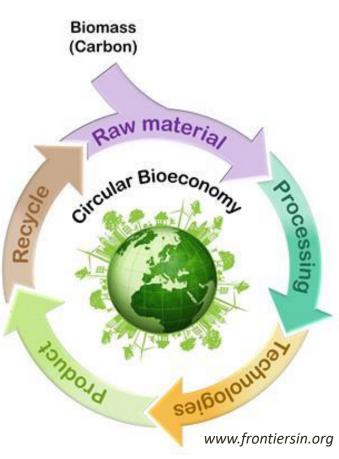
Actual pattern of wood use

Optimal pattern of wood use

Development of optimal models of wood utilisation - scenarios

Analysis of key factors affecting the utilisation of wood in Slovakia

In the wood production:


- structure of assortments
- Legal restrictions
- Level of technical infrastructure
- state policy
- climate change

In the wood processing and use:

- State policy
- Technical level
- Competitiveness.
- Restrictions on processors

In the supply chain:

- Accessibility and transparency of information
- Quality of the market environment.

Concluding remarks

- Timber supply tends to adapt to rapidly changing market conditions and the requirements of sectors processing and utilising wood
- Utilisation of wood from non-forest land and wood residues from wood processing industry results in increasing share of bioenergy sector on total wood biomass consumption
- There is no exact answer to explain how to use wood. It depend on the many factors which are specific for each country

Thank you for your attention!

Dr. Jan Parobek Associate Professor

Department of Marketing, Trade and World Forestry Faculty of Wood Sciences and Technology Technical University in Zvolen, Slovakia parobek@tuzvo.sk

