



## ANALYSIS OF THE REASONS FOR DEFECTS DURING FORMATION OF PROTECTIVE-DECORATIVE COATINGS ON WOODEN SURFACES

14th INTERNATIONAL SCIENTIFIC CONFERENCE WOODEMA

Authors

Dimitar Angelski, Pavlin Vitchev

Koper, Slovenia, June 16<sup>th</sup> - 18<sup>th</sup> 2021





## INTRODUCTION

A defect in a surface coating can be the result of a number of causes:

- defects due to usage of varnishes with poor quality;
- defects caused by conditions (regimes) of the coatings appliance;



• defects result of processing, storage, transportation and usage of the furniture.









- Usually, the identification of defects on coatings is executed by visual observation.
- Most of the defects appear during the production process itself. Thus, once they are detected, the respective actions for their elimination are taken.
- Often, the low adhesion of the coatings leads to defects that appear much later, while the furniture is being used by the consumers (whitening of coating, cracks, peeling).
- The removal of this kind of defects causes to the producer problems from technical,

juristic and financial nature.









## AIM AND TASKS

- The article pays attention to the causes for the most common defects by throughfeed layering of UV hardening protective-decorative coatings over wooden surface.
- The main conception is that by define the level of adhesion, indirectly could be determined the potential "hidden" defects in the production.
- Thus, a standard methodology has been used to determine the adhesion and gloss of water-dispersed coatings applied at industrial conditions.







# MATERIALS AND METHODS

• The research has been conducted at production environment. The samples tested are the usually produced in the factory seats made of pine solid wood.

The used protective-decorating materials are the following: water based stains (blackbrown color - ESP 273-99620), base coat - UV Filler (Uvett™ Fill UK1373); clear topcoat -UV curable lacquer (Uvett™ Clear UM1178).





# TECHNOLOGICAL REGIME

- The surfaces of the samples have been sanded, stained and vanished with UV roller coating machine at a feeding speed of 10 m/min. The initial sanding of the surfaces has been made with sandpapers P100 and P150.
- The quantity of the applied stain was 35 g/m<sup>2</sup>, while on the UV filler was 45 g/m<sup>2</sup>. The hardened filler has been sanded (P320/P400) and second layer is applied (20 g/m<sup>2</sup>). Afterwards, the lacquer (5 g/m<sup>2</sup>) is applied followed by UV hardening.





The radiation in UV roller coating machine is generated by two types of UV-curing

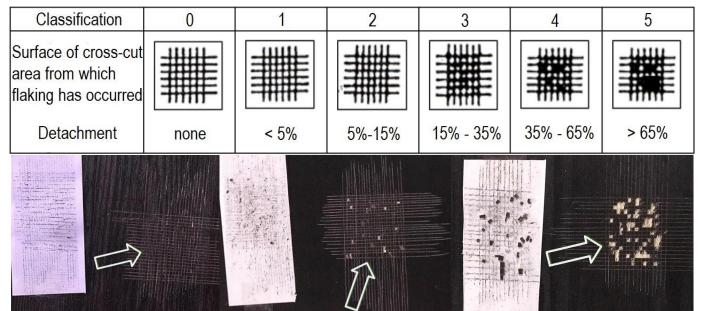
lamps: mercury Hg (280÷320 nm) and gallium Ga (390÷450 nm)



- Often, due to pollution of the UV lamps and the reflectors, the coatings are irradiated
  - at less radiation than those set by technological regimes. In this relation, the

#### experiment at lower values of UV radiation has been done.








# MEASUREMENT METHODS

• Adhesion strength of the coating films was determined by the Cross-cut test

according to the standard STN EN ISO 2409 (2013)







## MEASUREMENT METHODS

The gloss was measured at 60° incidence angle according to the ASTM D523-14
(2018) using a glossmeter (BYK Gardner micro-gloss, Germany)







## RESULTS

Most common defects during formation of coatings

at production environment

| Defects | Probable causes                                                                                                                             | Preventions                                                                                                                                |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bubbles | Thick applied lacquer layer;<br>foamed lacquer; airflow and / or<br>direct sunlight; hardener<br>overdose; high temperature in<br>the room. | Applying thin coatings;<br>before applying the<br>varnish, heat the wooden<br>surfaces by 10-15 °C<br>higher than the room<br>temperature. |  |  |





| Craters                    | Chemical incompatibility of some substances contained in wood (resins, essential oils) with the varnish systems used.                                               | Pre-priming with<br>appropriately selected<br>insulating primers.                                                                                  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Orange peel                | Poor varnish spillage; high<br>viscosity; incorrectly dosed<br>composition; unsuitable<br>technological regimes; airflow;<br>high temperature drying.               | Observing the<br>technological regime, as<br>the defect is very difficult<br>to remove. It does not<br>disappear completely even<br>after sanding. |
| Loss of gloss (less gloss) | Poor quality of varnishes;<br>inaccurate dosing of components;<br>sanding the film before it has<br>reached technological hardness;<br>unsuitable polishing regime. | Sanding and re-polishing;<br>sanding and applying a<br>new layer of high quality<br>gloss varnish.                                                 |







The results from the experiment for determination of the influence of the UV-lamps and reflectors pollution on the properties of the roller applied coatings

|                                                     | Standard UV radiation            |                                                  | Reduced UV radiation for<br>curing coatings |                                                  |
|-----------------------------------------------------|----------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------|
| Technological operation                             | UV energy,<br>mJ/cm <sup>2</sup> | UV radiation<br>intensity,<br>mW/cm <sup>2</sup> | UV energy,<br>mJ/cm <sup>2</sup>            | UV radiation<br>intensity,<br>mW/cm <sup>2</sup> |
| Complete hardening of UV<br>filler (two Hg lamps)   | 400                              | 300                                              | 350                                         | 280                                              |
| Incomplete curing of UV<br>filler (one Hg lamp)     | 150                              | 300                                              | 100                                         | 280                                              |
| Complete hardening of UV top lacquer (two Hg lamps) | 270                              | 300                                              | 220                                         | 280                                              |
| Cross-cut adhesion test                             | 0 ( ISO 2409:2013)               |                                                  | 3 (ISO 2409:2013)                           |                                                  |
| Gloss value at 60° angle                            | 13,9                             |                                                  | 8,5                                         |                                                  |





## CONCLUSION

The most effective way for fight against defects in lacquer coatings is mainly focused on:

- 1. Use of highly qualified staff for execution of all operations in the areas for lacquer coatings formation.
- 2. Organization of incoming control, including checks of all materials supplied in the factory.





- 3. Work upon experimentally tested regimes for coatings formation.
- 4. Regular conduct of ongoing technological control on the appearance and the main quality indicators of the finished lacquer coatings (adhesion strength, hardness, etc.).
- 5. Keeping a diary for defects in production.





### THANK YOU

Dimitar Angelski

+359 887567168



d.angelski@gmail.com

http://www.woodema.org/