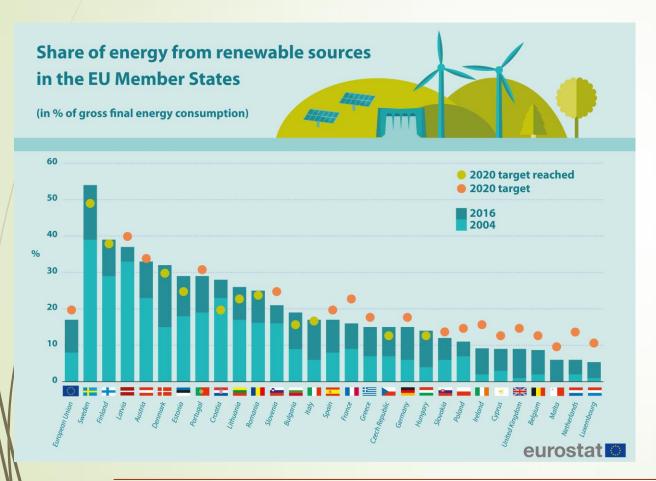

FACTORS AFFECTING THE SUPPLY OF ENERGY WOOD IN SLOVAKIA

Dzian Michal, Paluš Hubert, Parobek Ján, Šupín Mikuláš

TECHNICAL UNIVERSITY IN ZVOLEN

Department of Marketing, Trade and World Forestry

Contents


Introduction – Bioenergy in the EU and Slovakia

- Methodology
- Results
- Conclusion

Increasing the Use of Wood in the Global Bio-Economy, Belgrade, Serbia, September 26th – 28th , 2018

Bioenergy and the EU

- Increasing the share of renewable energy
- Biomass and renewable waste = most important energy source in the EU
- Slovakia goal 14 % by 2020
- Production potencial of forest and supply of wood material

Bioenergy in Slovakia

- Wood biomass most important renewable source
- 1.45 millions tons of energy wood was supplied
 - 835 000 t fuelwood
 - 615 000 t energy chips
- 1.8% share on consumption of energy
- Wood chips cover 30% of annual demand

Objectives

Identification of the key drivers affecting the supply of energy wood in Slovakia

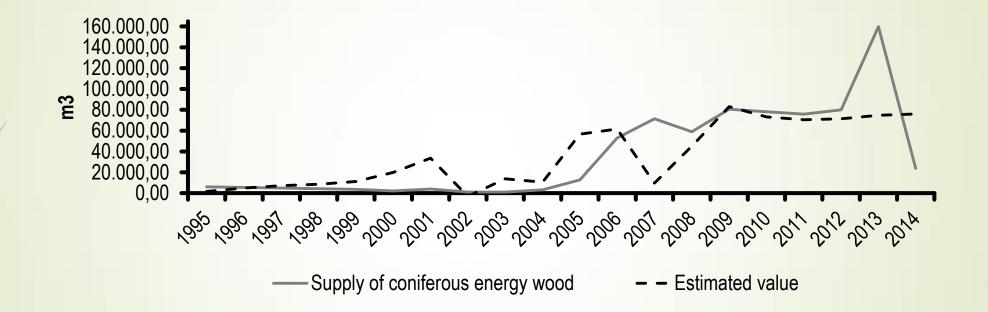
Devlopment of supply models of energy wood

Methods

- Econometric approach
- $SEW = f(p_d, IF, AF, FA, RF, TEW_{t-1}, OS, FRC, YSC, CTC, EMC)$
- Generals form of log function
 - $\square SEW_t = \beta_0 + \beta lnX + \gamma lnSEW_{t-1} + \varepsilon_t$
 - $lnSEW_t = \beta_0 + \beta lnX + \gamma lnX_{t-1} + \varepsilon_t$

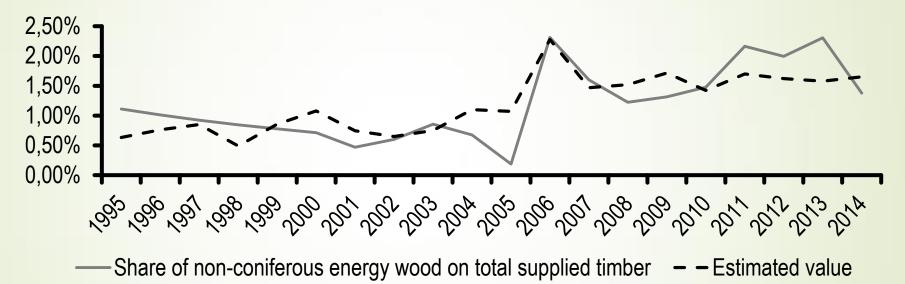
Results

MODEL	Short-term Elasticities					
	Constant	OS	IF	AF	CTC	EC
SEW _C	0.01	2.521***	0.611*			
SEW _{NC}	2791249			7.427***	-2.147*	-5.477*


Table 1 The models of supply of energy wood

Where:

- OS ratio of overmatured stands
- IF volume of incidental felling
- AF volume of actual felling
- CTC costs of clening and thinning
- EC emloyment costs


We Ma

Supply of coniferous energy wood

Supply of non-coniferous energy wood

We Ma

Conclusion

- Supplied quantity of timber do not depend on price
- Supply of both types (coniferous and non-coniferous) of energy wood was linked to different drivers
- Influence of both incidental and actual felling
- Coniferous energy wood incidental felling, rotation age of stand
- Non-coniferous energy wood actual felling, costs

We

Thank you for your attention!

