The effect of periodic stressing and material thickness on the bending strength of densified beech wood
Methods used for modification of wood:

- Chemical modification;
- Thermal modification;
- Mechanical modification or their combination.
The final product is characteristic by its enhanced physical-mechanical properties compared to the solid timber.

Fig. 1 Principle of wood densification by rolling
METHODS

- **Material:**
 - Fagus Sylvatica (*Fagus sylvatica* L.). – densified beech wood pressing level of 30%.

- **Selected characteristic:**
 - bending strength „σ_p“

- **Effects of selected factors:**
 - Material thickness (4 mm, 6 mm, 10 mm a 18 mm)
 - Number of cycles (0, 3 000, 6000 a 10 000)

- The test pieces after densification had the dimensions of $w=30 \text{ mm} \times t=2,8 \text{ mm}$, $4,2 \text{ mm}$, 7 mm a $12,6 \text{ mm} \times l=600 \text{ mm}$.
METHODS

1. Fig. 2 Densification of wood by rolling

2. Fig. 3 Cyclic machine
Fig. 4 Scheme of beech wood test pieces
Methods of determining the bending strength

The bending strength at the three-point bend:

\[\sigma_p = \frac{3 \times F_{\text{max}} \times l_1}{2 \times b \times t^2} \] \text{ [MPa]}

Where:

- \(\sigma_p \) – bending strength limit
- \(F_{\text{max}} \) – is a force recorded at the breaking point of a test piece
- \(l_1 \) – distance of the supports during the test
- \(b \) – width of the test piece
- \(t \) – thickness of the test piece

\[\sigma_{12} = \sigma_w[1 + \alpha(w - 12)] \] \text{ [MPa]}

Where:

- \(\sigma_w \) – bending strength of wood at a humidity at the time of testing
- \(\sigma_{12} \) – bending strength of wood at 12% moisture content
- \(w \) – the moisture content of a test piece at the time of testing
- \(\alpha \) – correctional humidity coefficient, which is 0.04 for all of the wood pulps

ČSN EN 310 (1995)

1 – test piece, \(F \) – load, \(t \) – test piece thickness,
\(l_1 = 20 \times t \), \(l_2 = l_1 \pm 50 \text{ mm} \)
Table 1. Basic table of the two-factorial analysis of variance, evaluating the effects of the individual factors on the change in bending strength of the densified beech wood.

<table>
<thead>
<tr>
<th>Observed factor</th>
<th>Summary of squares</th>
<th>Independence levels</th>
<th>Variance</th>
<th>Fischer’s F-test</th>
<th>Significance level P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs. element</td>
<td>1394760</td>
<td>1</td>
<td>1394760</td>
<td>2380.026</td>
<td>0.000001</td>
</tr>
<tr>
<td>Number of cycles</td>
<td>1289</td>
<td>3</td>
<td>430</td>
<td>0.733</td>
<td>0.535423</td>
</tr>
<tr>
<td>Thickness</td>
<td>55219</td>
<td>3</td>
<td>18406</td>
<td>31.409</td>
<td>0.000001</td>
</tr>
<tr>
<td>Number of cycles*Thickness</td>
<td>17118</td>
<td>9</td>
<td>1902</td>
<td>3.246</td>
<td>0.002254</td>
</tr>
<tr>
<td>Error</td>
<td>43366</td>
<td>74</td>
<td>586</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

Fig. 6 Graph of the 95% intervals of reliability illustrating the effect of the material thickness on the values of average arithmetic bending strength of the densified beech wood

Fig. 7 Graph of the 95% intervals of reliability illustrating the effect of the number of cycles on the values of average arithmetic bending strength of the densified beech wood
Fig. 8 Graph of the 95% intervals of reliability illustrating the effect of the interaction of material thickness and number of cycles on the values of average arithmetic bending strength of the densified beech wood
CONCLUSION

From the results listed in the paper ensues:

- Number of stress cycles proved to be a factor, which has no significant effect on the values of bending strength.

- In following works, it is necessary to focus on examination of the effect of greater number of stress cycles - 7000 and more.

- Recorded effect of decreasing bending strength with increasing material thickness concurs with the results in work of Milan Gaff et al., 2014, where he states, that even with preserved conditions of the slenderness ratio (20 x material thickness) the values of bending strength decrease as a consequence of greater increase of cross section module of the material compared to the increase in agential force, therefore the decrease in strength takes place.
Thank you for your attention!

The examined issue is a part of a research project number B05/15 of the IGA FLD grant project.
BIBLIOGRAPHY

• Gaff, M., Gašparík, M., and Barcík, Š. (2014). „The influence of cyckic loading on ultimate bending strength of beech solid and laminated wood“, *Drvna Industrija* 65(3), 197-203. DOI: 10.5552/drind.2014.1336

• SUCHOPÁR, M.: Vliv cyklického namáhání na ohybovou pevnost zhuštěného dřeva. Diplomová práce. 2015

• ČSN EN 310. 1995: Desky ze dřeva. Stanovení modulu pružnosti v ohybu a pevnosti v ohybu