



# FORECASTING OF **INDUSTRIAL ROUNDWOOD PRODUCTION** FOR THE PART OF SOUTH-EAST EUROPE

Maja Moro, Darko Motik, Denis Jelačić, Marek Drimal





# **INTRODUCTION**

The South-East Europe area is the most diverse, heterogeneous and complex transnational cooperation area in Europe, made up of a broad mix of countries. The emergence of new countries and with it the establishment of new frontiers has changed the patterns of political, economic, social and cultural relationships.





The SEE Programme helps to promote better integration between the Member States, candidate and potential candidate countries and neighbouring countries.

The participating countries in this research of Industrial Round Wood (IRW) production beside Croatia include Bosnia and Herzegovina, Macedonia, Montenegro, Serbia and Slovenia (SEE\* region).





The key to survival and growth of an organization is in ability to adapt its strategy to rapidly changing environment (Kotler, 2001).

Interpreting economic data and forecasting the future economic values are under the influence of environment and government policies, starting from the basic economic theories that operate in the market (Fair and Case, 1989).







This paper discuss a possibility to predict trends in production of industrial round wood in SEE\* region (Croatia and surrounding countries) on the basis of established values of IRW production in period 1993-2013.

Because of a turbulences in this market, as well as a length of the analyzed time series, prediction is limited to the year 2020.







## **MATERIAL AND METHODS**

The data of production values of Industrial Round Wood (IRW) through analyzed period 1993-2013 are gathered from *Croatian Bureau of Statistics*, *Ministry of Finance and Financial Agency* and *FAO base* (FAOSTAT).

The data of population, land area and forested area in SEE\* region are gathered from official websites of the participating countries.







The dynamic economic analysis of time series data was performed for the purposes of forecasting future trends in SEE\* region for:

- ➤ *IRW production* (in mil. m<sup>3</sup>);
- ➤ IRW production Per Capita (in m³/year per 1000 people);
- IRW production Per Forested Area (in m<sup>3</sup>/year per km<sup>2</sup> of forested area).
- Two types of time series models were built:
  - models A based on average rates of change;
  - ➤ models B linear trend models.







## **RESULTS AND DISCUSSION**

The **SEE\* area** is made up of 6 different countries which cover **245,1 thousand km<sup>2</sup>**, range in size from 13,8 thousand km<sup>2</sup> (Montenegro) to 77,5 thousand km<sup>2</sup> (Serbia).

A total resident population of SEE\* countries is almost **20 million people**, range in size from 0,6 million people (Macedonia) to 7,1 million people (Serbia). Shares of population and shares of land area according to total population and total land area of countries in SEE\* region are shown in Figure 1.







Figure 1. Shares of population and land area in SEE\* countries





Average **population density** (population divided by total land area) in SEE\* region is **86 people per km<sup>2</sup>** with standard deviation of 41 people per  $km^2$ .

The greatest population density is in Montenegro with 150 people per km<sup>2</sup>, followed by Slovenia (102 people/ km<sup>2</sup>), Serbia (92 people/ km<sup>2</sup>), Croatia (75 people/ km<sup>2</sup>), BIH (75 people/ km<sup>2</sup>) and smallest population density in Macedonia with 24 people per km<sup>2</sup>.





**Area covered by forests** in SEE\* region is **99 thousand km<sup>2</sup>** (almost 40% of total land area) range in size from 6,3 thousand km<sup>2</sup> (Montenegro) to 27,1 thousand km<sup>2</sup> (Bosnia and Herzegovina).

The greatest share of forested area in total land area is in Slovenia (60%), followed by BIH (53%), Montenegro (45%), Croatia (44%), Macedonia (40%) and smallest share in Serbia with only 24% of forested area.

Shares of forested area in total land area for countries in SEE\* region are shown in Figure 2.







Figure 2. Shares of forested area in total land area for SEE\* region

October 9, 2015







### **Industrial round wood (IRW) production in SEE\* countries**

According to results of descriptive statistics for IRW production on the basis of established values in the period 1993-2013, SEE\* countries can be categorized into three groups:

- Croatia with an average IRW production of 2,9 million m<sup>3</sup> and Bosnia and Herzegovina with 2,7 million m<sup>3</sup>;
- Slovenia with 1,9 million m<sup>3</sup> and Serbia with an average IRW production of 1,4 million m<sup>3</sup>;
- ➢ Montenegro with 0,2 million m<sup>3</sup> and Macedonia with an average IRW production of 0,14 million m<sup>3</sup>.

Results of these analysis are given in Table 1.





#### Table 1. Descriptive Statistics for IRW Production in m<sup>3</sup>

| State | Valid | Mean           | Std.Dev.       | Coef.Var. | Minimum        | Median         | Maximum        | Conf95%        | Conf.+95%      |
|-------|-------|----------------|----------------|-----------|----------------|----------------|----------------|----------------|----------------|
| Code  | Ν     | m <sup>3</sup> | m <sup>3</sup> | %         | m <sup>3</sup> |
| BIH   | 17    | 2.749.436      | 353.077        | 12,8      | 2.099.530      | 2.683.000      | 3.332.000      | 2.567.901      | 2.930.972      |
| HRV   | 21    | 2.882.571      | 795.847        | 27,6      | 1.710.000      | 2.886.000      | 4.157.000      | 2.520.306      | 3.244.837      |
| MKD   | 21    | 142.833        | 24.846         | 17,4      | 101.000        | 151.000        | 193.000        | 131.523        | 154.143        |
| MNE   | 8     | 219.126        | 44.981         | 20,5      | 192.000        | 208.001        | 329.000        | 181.521        | 256.730        |
| SRB   | 8     | 1.382.875      | 109.289        | 7,9       | 1.250.000      | 1.360.000      | 1.615.000      | 1.291.507      | 1.474.243      |
| SVN   | 21    | 1.856.532      | 307.957        | 16,6      | 958.000        | 1.841.404      | 2.288.160      | 1.716.351      | 1.996.712      |





Group categories aggrading to an average IRW production seen in Table 1 can be affirm by analysis of IRW production in 2013 (Figure 4) in which shares of IRW production for individual SEE\* countries were categorized in the same groups:

HRV and BIH together with 64%, followed by SVN and SRB with 33% and only 3% of total IRW production in 2013 were produced in MNE and MKD.







Figure 3. Shares of IRW Production in 2013 for SEE\* region

October 9, 2015





### **Industrial round wood production per capita (IRW/PC)**

According to results of descriptive statistics for IRW/PC production on the basis of established values in the period 1993-2013, SEE\* countries can be categorized into two groups:

- Slovenia with an average IRW/PC production of 901 m<sup>3</sup>/year per 1000 people, Bosnia and Herzegovina with 718 m<sup>3</sup>/year per 1000 people and Croatia with 679 m<sup>3</sup>/year per 1000 people;
- Macedonia with with 230 m<sup>3</sup>/year per 1000 people, Serbia with 194 m<sup>3</sup>/year per 1000 people and Montenegro with an average IRW/PC production of 106 m<sup>3</sup>/year per 1000 people.

Results of these analysis are given in Table 2.







#### Table 2. Descriptive Statistics for IRW/PC Production in m<sup>3</sup>/year per 1000 people

| State | Valid | Mean                                    | Std.Dev.                                | Coef.Var. | Minimum                                 | Median                                  | Maximum                                 | Conf95%                                 | Conf.+95%                               |
|-------|-------|-----------------------------------------|-----------------------------------------|-----------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Code  | N     | m <sup>3</sup> /year per<br>1000 people | m <sup>3</sup> /year per<br>1000 people | %         | m <sup>1</sup> /year per<br>1000 people | m <sup>3</sup> /year per<br>1000 people |
| BIH   | 17    | 717,7                                   | 92,2                                    | 12,8      | 548,0                                   | 700,4                                   | 869,8                                   | 670,3                                   | 765,1                                   |
| HRV   | 21    | 678,8                                   | 187,4                                   | 27,6      | 402,7                                   | 679,6                                   | 978,9                                   | 593,5                                   | 764,1                                   |
| MKD   | 21    | 229,8                                   | 40,0                                    | 17,4      | 162,5                                   | 243,0                                   | 310,5                                   | 211,6                                   | 248,0                                   |
| MNE   | 8     | 106,1                                   | 21,8                                    | 20,5      | 92,9                                    | 100,7                                   | 159,3                                   | 87,9                                    | 124,3                                   |
| SRB   | 8     | 193,5                                   | 15,3                                    | 7,9       | 174,9                                   | 190,3                                   | 226,0                                   | 180,7                                   | 206,3                                   |
| SVN   | 21    | 900,8                                   | 149,4                                   | 16,6      | 464,8                                   | 893,4                                   | 1.110,2                                 | 832,7                                   | 968,8                                   |





Group categories aggrading to an average IRW/PC production seen in Table 2 can be affirm by analysis of IRW/PC production in 2013 (Figure 4) in which shares of IRW/PC production for individual SEE\* countries were categorized in the same groups:

SVN, HRV and BIH together with 85%, followed by SRB, MKD and MNE with only 15% of total IRW/PC production in 2013.







Figure 4. Shares of IRW/PC Production in 2013 for SEE\* region

October 9, 2015







## **Projections for Industrial round wood production in SEE\* countries**

- Based on the average rate of change (2,027%) in the observed period for:
  - ≻IRW Production in SEE\* (in mil. m<sup>3</sup>),
  - ➢IRW/PC Production in SEE\* (in m³/year per 1000 people),
- models A for prediction of future values of IRW production were developed.







Correlation analysis to determine the degree of correlation between the *values of IRW Production* as dependent variables and *time* (*t*) as independent variable was used.

The direction and strength of the correlation relationship (r=0,8673) was positive and high so we developed linear trend models (*models B*) for prediction of future values of IRW Production.







# Table 3. Models A and B for calculating the future IRW production values for SEE\* countries

| Production | Model A                                            | Model B                                        |
|------------|----------------------------------------------------|------------------------------------------------|
| IRW        | $\hat{P}_{A}(t) = 7,215 \cdot 1,02^{(t-1)}$        | $\hat{P}_{B}(t) = 0,1319 \cdot t + 7,916$      |
| IRW/PC     | $\hat{P}_{A}^{PC}(t) = 361, 3 \cdot 1, 02^{(t-1)}$ | $\hat{P}_{B}^{PC}(t) = 6,605 \cdot t + 396,35$ |







According to models B expected linear increase in:

- the annual IRW Production values for SEE\* countries is 0,132 million m<sup>3</sup>
- the annual IRW/PC Production for SEE\* countries is 6,6 m<sup>3</sup>/year per 1000 people

In all models, t is mark for the time, where t=0 compared to year 1993, t=1 for year 1994; ..., t=15 to year 2008, etc.







Figure 5. Existing and projected IRW Production values for SEE\* countries

October 9, 2015









Figure 6. Existing and projected IRW/PC Production values for SEE\* countries

October 9, 2015







## CONCLUSION

Assuming that the macroeconomic policies of each SEE\* country will not be altered, and assuming that the models for predicting future values of IRW production satisfy all statistical and theoretical terms, constructed models A and models B could become a great help for a future actions in this region.







# CONCLUSION

Regional cooperation in SEE\* region is essential, regardless of the different stage of integration of the various countries.

The security, stability and prosperity of the region are of significant interest to the all participants.







## THANK YOU ALL FOR YOUR ATTENTION



October 9, 2015

