

DEVELOPMENT OF THE SAWLOGS SUPPLIES IN THE SLOVAK REPUBLIC

Ján Parobek Erika Loučanová Martina Kalamárová

We Ma

Content

Introduction	 Current situation –Green Report Development of sawlogs supplies Short term prediction
Methodology	 Quarterly Timber Statistic Period 15 years (1998-2013) Regression analysis
Results	Exponential regressionLinear regression

Methodology

$y = f(X, \beta) + \varepsilon$

where:

We Ma

- f (x, β) is a regression function,
- β unknown parameters,
- y sawlogs supply,
- ϵ vector of random errors
- x time,

Research focuses on analysis of sawlogs supply in Slovakia

- Analysed development of wood assortments
 of the III class
- 16 years, from 1998 until 2013
- Prediction the future development of logs supply in Slovakia (till 2018)
- Simple model where the dependent variable y (sawlogs supply) only depend on explanatory variables (time)

Results

The first approach describes linear regression model to analyze development of logs supply

y = 224 029**x** + 1 483 336

- logs supply increased from 1.46 mil m³ in 1998 to 5.29 mil. m³ in 2014
- estimation that supply will be increased for next years and this year reach a value 5.52 mil. m³

We Ma

Results

The second model applies exponential regression model to analyse development of logs supply

y = 1 626 462 *1,081∧**x**

• exponential model assumes 1.47 mil. m³ in 1998 and 6.09 mil. m³ in 2014

We Ma

Conclusion

- The curve flattening of modelled empirical values is tested by coefficient of determination
- Linear model the value of coefficient of determination is high about 0.78 and standard error is very high (586 320)
- Linear model is a more accurate estimate of the future development
- The analysis confirmed positive development of logs supply
- During the period the volume of supply has increased several times
- 2010 the impact of the crisis caused a drop of the supply (3.89 mil. m³)

Thank you for your attention!

Ing. Ján Parobek, PhD. Ing. Erika Loučanová, PhD. Ing. Martina Kalamárová, PhD. e-mail: parobek@vsld.tuzvo.sk Department of Marketing, Trade and World Forestry Technical University in Zvolen Masarykova 24, 960 53 Zvolen, Slovakia

We Ma